LC.P583[两个字符串的删除操作]
方法一:转化为最长公共子序列
求将两个字符串删除任意字符后能相同的最短步数,可以等价于求两个字符串的最长公共子序列LCS,最后使得两字符串删除任意字符后能相同的最短步数$= n - lcs + m - lcs$
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
| class Solution { public int minDistance(String word1, String word2) { int n = word1.length(), m = word2.length(); int[][] f = new int[n + 1][m + 1]; for (int i = 1; i <= n; ++i) { for (int j = 1; j <= m; ++j) { if (word1.charAt(i - 1) == word2.charAt(j - 1)) { f[i][j] = f[i - 1][j - 1] + 1; } else { f[i][j] = Math.max(f[i][j - 1], f[i - 1][j]); } } } int lcs = f[n][m]; return n - lcs + m - lcs; } }
|
- 时间复杂度:$O(n \times m)$
- 空间复杂度:$O(n \times m)$
方法二:动态规划
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
| class Solution { public int minDistance(String word1, String word2) { int n = word1.length(), m = word2.length(); int[][] f = new int[n + 1][m + 1]; for (int i = 1; i <= n; ++i) f[i][0] = i; for (int j = 1; j <= m; ++j) f[0][j] = j; for (int i = 1; i <= n; ++i) { for (int j = 1; j <= m; ++j) { if (word1.charAt(i - 1) == word2.charAt(j - 1)) { f[i][j] = f[i - 1][j - 1]; } else { f[i][j] = Math.min(f[i - 1][j], f[i][j - 1]) + 1; } } } return f[n][m]; } }
|
- 时间复杂度:$O(n \times m)$
- 空间复杂度:$O(n \times m)$