LC.P1630[等差子数组]

题目描述

如果一个数列由至少两个元素组成,且每两个连续元素之间的差值都相同,那么这个序列就是 等差数列 。更正式地,数列 s 是等差数列,只需要满足:对于每个有效的 is[i+1] - s[i] == s[1] - s[0] 都成立。

例如,下面这些都是 等差数列

1, 3, 5, 7, 9
7, 7, 7, 7
3, -1, -5, -9

下面的数列 不是等差数列 :

1, 1, 2, 5, 7

给你一个由 n 个整数组成的数组 nums,和两个由 m 个整数组成的数组 l r,后两个数组表示 m 组范围查询,其中第 i 个查询对应范围 [l[i], r[i]] 。所有数组的下标都是 从 0 开始 的。

返回 boolean 元素构成的答案列表 answer 。如果子数组 nums[l[i]], nums[l[i]+1], ... , nums[r[i]] 可以 重新排列 形成 等差数列answer[i] 的值就是 true;否则answer[i] 的值就是 false

示例1

输入:nums = [4,6,5,9,3,7], l = [0,0,2], r = [2,3,5]
输出:[true,false,true]
解释:
第 0 个查询,对应子数组 [4,6,5] 。可以重新排列为等差数列 [6,5,4] 。
第 1 个查询,对应子数组 [4,6,5,9] 。无法重新排列形成等差数列。
第 2 个查询,对应子数组 [5,9,3,7] 。可以重新排列为等差数列 [3,5,7,9] 。

示例2

输入:nums = [-12,-9,-3,-12,-6,15,20,-25,-20,-15,-10], l = [0,1,6,4,8,7], r = [4,4,9,7,9,10]
输出:[false,true,false,false,true,true]

提示:

  • n == nums.length
  • m == l.length
  • m == r.length
  • 2 <= n <= 500
  • 1 <= m <= 500
  • 0 <= l[i] < r[i] < n
  • -105 <= nums[i] <= 105

思路

遍历枚举。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
class Solution {
public List<Boolean> checkArithmeticSubarrays(int[] nums, int[] l, int[] r) {
int m = l.length;
List<Boolean> ans = new ArrayList<>();
for (int i = 0; i < m; ++i) {
int left = l[i], right = r[i];
int[] t = new int[right - left + 1];
for (int j = left, k = 0; j <= right; ++j, ++k) {
t[k] = nums[j];
}
int length = t.length;
if (length <= 2) {
ans.add(true);
continue;
}
Arrays.sort(t);
int d = t[1] - t[0];
boolean flag = true;
for (int j = 2; j < length; ++j) {
int s = t[j] - t[j - 1];
if (s != d) {
ans.add(false);
flag = false;
break;
}
}
if (flag) ans.add(true);
}
return ans;
}
}

时间复杂度:$O(mlogn)$

空间复杂度:$O(n)$