LC.P2367[算数三元组的数目]
题目描述
给你一个下标从 0 开始、严格递增 的整数数组 nums
和一个正整数 diff
。如果满足下述全部条件,则三元组 (i, j, k)
就是一个 算术三元组 :
i < j < k
,nums[j] - nums[i] == diff
且nums[k] - nums[j] == diff
返回不同 算术三元组 的数目。
示例 1:
输入:nums = [0,1,4,6,7,10], diff = 3
输出:2
解释:
(1, 2, 4) 是算术三元组:7 - 4 == 3 且 4 - 1 == 3 。
(2, 4, 5) 是算术三元组:10 - 7 == 3 且 7 - 4 == 3 。
示例 2:
输入:nums = [4,5,6,7,8,9], diff = 2
输出:2
解释:
(0, 2, 4) 是算术三元组:8 - 6 == 2 且 6 - 4 == 2 。
(1, 3, 5) 是算术三元组:9 - 7 == 2 且 7 - 5 == 2 。
提示:
3 <= nums.length <= 200
0 <= nums[i] <= 200
1 <= diff <= 50
nums
严格 递增
方法一:暴力
1 | class Solution { |
- 时间复杂度:$O(n^3)$
- 空间复杂度:$O(1)$
方法二:哈希表
1 | class Solution { |
- 时间复杂度:$O(n)$
- 空间复杂度:$O(n)$
本博客所有文章除特别声明外,均采用 CC BY-NC-SA 4.0 许可协议。转载请注明来自 byu_rself!
评论